Showing posts with label nondestructive testing. Show all posts
Showing posts with label nondestructive testing. Show all posts

Monday, October 5, 2009

Nondestructive Testing

Nondestructive testing (NDT) includes an extensive range of analysis techniques that are used to assess the physical attributes of a component or a system. Some of the most popular Nondestructive testing (NDT) methods include ultrasonic, radiographic, magnetic particle, liquid penetrant, eddy current, visual, leak testing, mechanical, welder/welding procedure qualification, Positive Material Identification, Hydrostatic, Ground Penetrating Radar, and Digital Imaging.

With the success rate of Nondestructive testing (NDT) methods, they have become an integral part of the forensic engineering, mechanical engineering, electrical engineering, civil engineering, systems engineering, medicine, and art. The three main things that play major role during Nondestructive testing are (1) Electromagnetic Radiation, (2) Sound, and (3) Inherent Properties of Materials to be tested.

The application areas where Nondestructive testing (NDT) is used include automotive, aviation, construction, power plants, manufacturing, railways, military, and naval industry. NDT has been proved extremely beneficial for product evaluation, troubleshooting, and research as it does not affect the object that being tested in any way. Some of the applied examples of Nondestructive testing are given below:

Weld Verification

The NTD or Nondestructive testing techniques used in welds testing include as industrial radiography using X-rays or gamma rays, ultrasonic testing, liquid penetrant testing or via eddy current and flux leakage. All these tests help to identify cracks in the surface area which are not visible to the naked eye. Welding technique is basically for joining metals, usually the metal joints or connection is prone to extra wear and tear during the product life therefore it is very important to ensure that welding is properly done and all the testing procedures are carefully conducted.

Radiography in Medicine

Radiography has been widely used to image parts or functions of the body. Some elements of human body act in response to radiographic inputs like x-rays or magnetic resonance which help the medical professionals to study the functionality of the human body. It is used to detect bone fractures and diseases and also examine the interior of mechanical systems. Radiography is majorly used in many types of medical treatments and due to its accurate and efficient results has become an integral part of the medical science.

Abcndt.com use reliable non-destructive and destructive testing methods to increase customer satisfaction and lower manufacturing costs. They cater to industries, such as automotive, aviation, construction, power plants, manufacturing, railways, military, and naval industry. ABC Testing Inc. have Certified Welding Inspectors (CWI) doing welding inspections for steel, aluminum, specialized metals like Inconel, Monel and NiAlBrz, and many other alloys. Browse through www.abcndt.com for more information.

Tuesday, June 23, 2009

Ultrasonic Testing

Ultrasonic Testing is a Nondestructive Testing (NDT) method but it is used in various application areas, such as aerospace, automotive and transportation sectors. It is used for the inspection of metals, components, assemblies and composite structures. The process of Ultrasonic Testing involves introducing ultrasonic pulse-waves into the testing object to identify internal defects or to distinguish materials.

The frequency range of the ultrasonic pulse-waves is somewhere between 0.1-15 MHz. Ultrasonic Testing helps to determine the thickness of the object and check things like pipework corrosion. When Ultrasonic testing is done on steel and other metals and alloys high frequency waves are penetrated into the object. In case of concrete, wood and composites less resolution frequency waves are launched into the object.

Ultrasonic Testing – Working Explained

An Ultrasonic Testing system is used for the inspection procedure. The system comprises of certain functional units like pulser/receiver, transducer, and display devices.

Pulser/Receiver: It produce high voltage electrical pulses
Transducer: It produce high frequency ultrasonic energy
Display Devices: Reflects signal strength

The high voltage electrical pulses produced by pulser/receiver are driven to the transducer which in turn generates high frequency ultrasonic energy. This energy wave propagates through the test object in the form of waves. If there is some obstacle in the wave path like a crack then some part of the energy is reflected back. The reflected energy shows that there is a flaw in the surface of the test object. The transducer transforms the reflected wave signal into electrical signal and displays it on the screen of the display device. Imperfections or other conditions in the space between the transmitter and receiver reduces the time of transmission of the signal and reveal the presence of defects.

Advantages Ultrasonic Testing

• Ultrasonic testing makes detection of the deep rooted flaws easy due high frequency waves that penetrate into the testing object.
• Ultrasonic testing also allows to spot flaws that are extremely small and otherwise not visible due to the high sensitivity of ultrasonic pulse-waves.
• Ultrasonic testing requires access to only one surface to detect the flaws and transmit the results.
• Ultrasonic testing produces extremely accurate results in comparison to the other nondestructive methods.
• Ultrasonic testing helps to determine the in-depth internal flaws with easy and also identify thickness of parts with parallel surfaces.
• Ultrasonic testing helps to estimate the size, orientation, shape and nature of defects as well.
• Ultrasonic testing is a highly automated operation and is not affected by the surrounding equipment and materials in the area.